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Abstract In this paper , the Fundamental Theorem of Calculus , the derivation rule of elementary func­
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0引言

为了使微积分变得容易学习而不失严谨,已有 

不少工作［1 — 12(.

最近［13］指出，从一些很平常的想法出发,即使 

没有微积分，也能够系统而简捷地解决通常认为用 

微积分才能解决的许多问题,其中包括判断函数的 

增减凸凹,求作曲线的切线以及计算函数曲线下的 

面积等等.

将［13］中的这些方法进一步包装深化,使之和 

传统的微积分分享共同的符号语言,自然就形成了 

进入微积分天地的另一条通道.这条通道无需经过 

极限的关口 ,可以称为先于极限的微积分.
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先于极限不 不 ! 为 的一

份数学遗产,对微积分以及相关学科的成长发展极 

为重要,不可缺少.但它并不是微积分入门的拦路 

虎.先学一些微积分,接着学极限并非不可.本文将 

在［13］的基础上,建立不依赖于极限的导数和定积 

分的概念，证明微积分基本定理，给出初等函数的求 

导法则,引出泰勒公式，并进一步阐述有关的应用.

1函数在区间上的导数

导数是微积分中重要的基本概念.其经典物理 

模型是运动物体的瞬时速度.

什么是瞬时速度？这是建立微积分过程中需要
的第一 ! 想

度趋于0时,平均速度的极限叫做瞬时速度［14(.但 

什么是极限呢？

牛顿用一个一般性的难题代替了一个具体的难 

题.为了回答这个新的难题,数学家们用了一个多世 

纪*
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牛顿和其后的数学家没有注意到，有一个更平 

易的办法来理解瞬时速度与平均速度的关系：瞬时 

速度有时不大于平均速度，有时不小于平均速度.

用函数FS)表示运动质点在时刻#走过的路程, 

则从时刻$到时刻%该质点走过的路程为F(%)— 

F(u)，于是它在时间区间的平均速度就是 

"$匸.若函数/(#)表示它在时刻#的瞬时

速度，则“瞬时速度有时大于等于平均速度，有时小 

于等于平均速度的数学表达就是：在有 

某两个时刻0和g,使得不等式&(')"
F(%) — F(u)

%―u "fCq)成立.

正是基于上述案例的启发，［13］引入了下述很 

有用的差商控制函数的概念.

［定义1-1(差商控制函数%］ 设函数F(#)和 

&(#)都在数集S ±有定义，若对S中的任意两点 

$<%,总有［$,%］ $ S中的'和q ,使得 

f(.p)"F(U)—F(%)<f(.q)

成立，则称&(#)是F(#)在数集S上的差商控制函数.

在［13］中已经看到，差商控制函数是研究函数 

性质的有力工具.

对差商控制函数加上什么条件才能获得合理的 

导数概念呢？讨论瞬时速度是为了认识运动过程， 

如果所设想的瞬时速度能帮助我们尽可能准确地认 

识运动过程，这设想就是合理的.至于在具体应用 

环境下要用什么条件来界定或检验，是进一步细化 

的任务.

［定义1-2(函数在区间上的宏导数)］ 设在区 

间Q±f(#)是F(#)的差商控制函数.如果在Q上以 

&(#)为差商控制函数的任一个函数都有F(#)+C的 

形式，则称&(#)是F(#)在Q上的宏导数，并称F#) 

在Q上可控.

也可以说,F(#)的宏导数就是专属于它的差商 

控制函数.按定义宏导数并不要求是唯一的.

注意我们仅仅定义了函数在区间上的宏导数 ， 

还没有定义一点处的导数.更细致的探讨表明，宏导 

数和传统的导数确实不等价，而且互不包含.宏导数 

这个词是我们杜撰的.更深入的研究表明，&(#)是 

F(#)在的宏导数当且仅当F(#)是&(#)的 

变上限的黎曼积分.

由上述定义和［13］中所得，立刻知道

［命题1-1(用函数的宏导数研究函数性质%］ 

设 F(#)在区间Q可控，&(#)是F(#)在Q上的宏 

导数，则

若&(#)在区间Q为0,则F(#)在Q为常数；

若&(#)在区间Q为常数，则F(#)在Q为线性； 

若&(#)在区间Q为正，则F(#)在Q递增； 

若&(#)在区间Q为负，则F(#)在Q递减； 

若&(#)在区间Q不减(递增)，则F(#)在Q下 

凸(严格下凸)&

若&(#)在区间Q不增(递减)，则F(#)在Q上 

凸(严格上凸).口

其实，函数的增减凸凹，理论上并不要求上面的 

&(#)是F(#)的宏导数，只要它是F#)的差商控制 

函数就够了.

［命题1-2(函数的差商控制函数差商有界时 

是其宏导数%］设F(#)在区间Q有差商控制函数 

f (#)，则当&(#)差商有界时它是F(#)的宏导数.

证明 这是宏导数定义与［13］中命题4-3相 

结合之推论.口

由［13］的命题4-2,差商有界的宏导数若存在 

必唯一.这类宏导数在理论和应用上极为重要，故 

下面给以特别的关注.

［定义1-3(函数在区间上的李普希兹导数)］

设f(#)在区间Q上差商有界,并且是F(#)的差 

商控制函数，则称F(#)在Q上李普希兹可导，称f#) 

为F(#)在Q上的李普希兹导数，记作F'(#)=f(#).
于宏导数 李普 兹导数 的 系! 

证明一个有趣的事实：设有一串定义于的函 

数fo,f1,-,f/,f”+1,其中当沧>0时f+是f的 

控制函数.那么，只要f„+1是fn的宏导数,则对所有 

k<n , fo+1是fo的李普希兹导数.

所谓李普希兹导数,按传统意义就是满足李普 

西兹条件的导数，国外有些教材上有此说法,不是我 

们的创意.为简便,本文下面提到的导数均指李普希 

兹导数,可导也指李普希兹可导&特别是有关命题在 
统意义 也 表 中 李普 兹!

事实上,在传统意义下初等函数的导数除个别特殊 

点外都是李普希兹导数.

按此定义,在［13］中已经求出了一些函数的导 

数，如
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$#丫 = 2# , ,(丄％ ］ —1,
2# # #

(#/)/ = /#/—1 (/ 为整数)，(sin#)7 = cos#,

(In#)=丄，(log#) = (a>0 ,'1),
#

(e#) = e# , (.a#)7 =a#\na (,〉0 ,'1).

根据［13］中命题4 — 1,若g(#)在Q上是f (.#') 

的李普希兹导数，则对任意La,b2(Q有正数2，使 

得对'上的任两点$#%和任意s ) ［_u^v］,有不 

等式

\f(%)—f(u)—g(s)\<M\v—u\.
%―u

下面进一步指出，此不等式也是g(#)是f(#) 

的李普希兹导数的充分条件.称上述不等式为一致 

性不等式.

［命题1-3(函数g(#)是&(#)的李普希兹导数 

的充分条件％设g(#)和f(#)在Q上有定义，且 

对任意［_a,b}(Q有正数2，使得对,,bl^.的任两 

点 u'%有不等式

I f(-%')^f(u)—g(u) I "2 * % —u I ,
%―u

则g(#)在Q上是f(#)的李普希兹导数.

证明 将题设条件I f(% — — g(u) I "
%―u

21 %—u I 中的 u、％ 交换后得 I f%——1(%) I " 
%―u

21 %—u I，比较两式得 I g(%)— g(u) ) "221 % — u I , 

这证明了函数g(#)在Q上差商有界.下面来证明 

g(#)是f(#)的差商控制函数.这证明的想法很简 

单很自然：在［u, %］上找个很小的子区间,使得f (#) 

在此子区间上的差商大于(小于)它在［u,%］上的差 

商；当此子区间足够小时,g(#)在此子区间上的值 

非常接近f(#)在此子区间上的差商，从而也大于 

(小于)f(#)在［u,%］上的差商，这正是要证明的.具 

体写出来就是下面的推导.

若对于所有#) (",%］差商f(#)—f(u)为常数
# —u

则显然.不然，由差商分化定理(［13］中命题2-1) 

就有［_r,s］ + ［_u,%］使

f(%)— f(u) — f(s)— f(r) = 5〉0
%―u s―r °

将［r,s］等分为/段，记6= ，则/段中必有一段

''+ 6]使 f'\6)-f')" f()—f(r，当
6 s―r

26<d时就有

g')"f' + 6_f')+26#f()—f()+5
6 s―r

f(% ) —f(u )
% —u

同理可证有 qOLu,%］使得 g(q)，&(% ) —f(u ) . 口
% —u

由此立刻得到一个重要的结论：

［命题1-4(函数g(#)是f(#)O李普希兹导数 

的充要条件)］ 设g(#)和f# 在Q上有定义，则 

g(# % Q f (# %的 李 普 兹 导 数 的 件

是:对任意［a,］(Q有正数2，使得对［,］上的任 

两点u'%有

I f(%—f(u—g(u I "21 %—u I.
%―u

下面应用命题1 - 4来验证几条［13］中已经得 

到的结果.

例1-1 求证g(#) = 2#是函数f(#) =#2的 

导数

证明计算差商得

f (# + 6 ) —f(# ) = (# + 6 )
6 h =2#+6,

故有

I f( + 66f( —2# I " I 61 ,

由命题1 — 4知2#是#2的导数.□ 

例1 -2 求函数f(#)=#3的导数. 

解函数f#)=#的差商为#+663 —#‘

3#2+3#6+62, 任意 [a,b] 有不等式

I f# + 6)—f#)—3#2 I = I (3# + 6)6 I
6

"3 ( a + b % 6 ,
故得f#)=#有导数3#2. □

例1 -3 求"(#)=丄(#'0)的导数.
#

解 对于不含0的闭区间［,］中的#和#+6 

计算差商得

F(# + 6)—F(#) = — 1 =— 1 + 6
6 # (# +6 % #2 #2 (# +6 %

移项，并且设7 = min{ |a I , |b I },则有

I F(#+6) —F(#)—(—丄)=I 6 I " I 6 I
I 6 1 了 I = I #2(#+6) I " 7
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故得一1是丄的导数.口

例1-4 求证是函数8(#)=槡#(#>0)的 
2#

导数!

解设0<a<b,在上估计函数的差商和

1的差得

=|-------------6------------ 2 | " ,

2槡# ( (/x + h +槡#) H, \［a

即知厶是/#的导数.口

2/#

将上述不等式写成形式| /x + h — (/# +

) | " 1 6 1厂，可以看出/x + h的近似值为/x + 
2/x Ha /

h而误差不超过162，这里，可取x和x+h中 

2x Ha /a

较小者.例如，/<= /49 + 1 - /Z： + ^^ = 7.
2/49

071428…，误差不超过丁每-0. 0004.这比［13］中 
H7

例1 — 5的方法更为直截了当.
例1-5 对正整数n,验证函数g(x') =nxn—1 

是f(x)=xn的导数.
解 由 f(.x + 6) — f(.x) = (x + h) — xn =

nxn：1 h + . C°xn~khk，当 x ) ［a ,b］时得
k-2

i f(x+h') — f(x)—mn i -1 .cnxn—khk—11 
h 七

"2n (I a l + l b |)n—2 I h I ,

可知f(.x) — xn有李普希兹导数nxn—1. □

我们看到，利用一致不等式来计算导数，有时更为

.

2 求导法则

为了更广泛地应用导数知识，就要知道更多函 

数的求导 式.

应用下面几个求导法则，结合已有的求导公式， 

可以解决初等函数类的求导问题.

［命题2-1(函数线性组合的求导法%］ 若 

f(x)和g(x)都在区间！上可导，则对任意实数a和 

0,函数af(x) +"g(x)也在区间［上可导，且有

(.ctf(x) + pg(x))r — ctf，(x) + 0g' (x).

证明 根据李普希兹可导的定义和题设，对于

任意闭区间La,b］(八有正数Mi和Mz使对 

中任意的x和x+h有下列不等式成立

| f(.x + h) ― f(.x) ― f' (x)h I " Mh，

I g(x + h) — g(x) — g' Oh | " Mh .

记 H(x) — af(x) + 0g (x)，得

I H (x + h) — H (x) — Caf^Cx) + 0g' (x))h I

"I a(.f(x + h) — f(x) — f (,x~)h) I +
I $g$x+h) —g$x) —g'$x)h) I

"(I aM1 I + I /MG I)h2,

由命题9-2可知H(x) — af(x) + 0g(x)有李普希 

兹导数 af'Cx) + 0g' (x) . □

［命题2-2(复合函数求导的链式法则)］设函 

数F(x)在区间！上可导，G(x)在区间J上可导，且 

当x )［时有F(x) )「则复合函数G(F(x))在I

导，

(G(F(x)))' — G'(F(x))F'(x).
注意求导数的记号的两种形式：(G(F(x)))z表 

示函数G(F(x))对x求导，而Gr(F(x'))表示G(u) 

对u求导后再令u — F(x)代入.
证明 为简单且不失一般性，我们对I —',

b］且? — ',5的情形加以论证.
只要证明有一个正数M，使对中的任意 

两点 x 和 x+h 有不等式 I GCF(x + h))—G(F(x)) 

— G(F(x))F'(x)h I" Mh 即可.

记 F(x) — y ,F(.x + h) — F(.x) — H，则上式左 

端可以写成

I G(y + H) — G(y) — Gf (y)'(x)h I

—I G(y + H) — G(y) — Gf (y) H +

G'(y)H — G'(y)F'(x)h I
"I G(y + H) —G(y) —G'(y)H I +

I G'(y) 1I H — F'(x)h I.
根据李普希兹可导的定义和条件,有正数A、 

M1、M2等使对',b］中的任意两点x^x+h和［@5］ 

中的任意两点yy + H有不等式

IH —F' (x)hI—IF(x+h) —F(x) —F' (x)hI 

"Mh ,
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I GCy + H) -GCy) -G/Cy)H I" 2ZHZ,

I G，(y) |< A, F # < A;

I H |"| F'(#)6 I9I 262 I

< (A + 2(b-a)) I 6 I= 23 I 6 I.

把这些不等式用于前式即可.口

［命题2-3(多重复合函数求导的链式法则％ 

设函数F(#)在区间！上可导，G(#)在区间J上可 

导，H(#)在区间K上可导，且当#)1时有F(#)) 

J,当u )=时有G(u) ) K,则复合函数 

H(G(F(#)))在=上可导，且

(H (G(F(#)y))/ = H'(G(F(#)))G'(F(#))F'(#).

证明 记 #(#) = G(F(#))得(H(#(#)))' = 
H' (#))'(#) & 再得'(#) = (G(F(#)))'= 

G'(F(#))F'#) &集成两式得

(H (G(F(#))))' = (H(#(#)))'

=H'(G(F(#)))G'(F(#))'(#). □ 

利用链式法则，可以轻松获得函数乘积与商的求导 
式!

［命题2-4(函数乘积的求导法则％ 若f(# ) 

和g(# )都在区间=上可导，则函数f(#) - g(#)也 

在区间=上可导，且有

((#) • g(#) )' = f'(#) i g(#) + g(#) i f(#). 
证明 只要在=的任意闭子区间Q上考虑即可. 

取足够大的正数A使得f(# ) +A和g(# ) 9A 

在Q上都为正值，由于

(f(#) 9 A) (g(#) 9 A)

=exp(ln(f(# ) 9A ) (g(#) 9A ))

=exp(ln(f (# ) 9 A ) 9 ln(g(# ) 9 A ))， 

左端展开求导，右端用复合函数求导的链式法则得 

(f(#)g(#))' 9A(f'(# ) 9g'(# )) 

=(f(#) 9A))g(#) 9A) * ^f'#-A9g(#：) + A). 

整理后得到所要的公式.□
［命题2-5(函数倒数的求导法则％ 若f(# ) 

在区间=上可导，且f(#) ' 0,则函数f# 也在区 

间=上可导且(1#) ) '=： Tf#)-

证明 把-1 看成A =丄和u = f(#)的复
f# u

合函数，用链式法则即可.□

于是立刻得到

［命题2-6(函数商的求导法则％ 若f(#)和 

g(#)都在区间=上可导且g(#) ' 0,则函数氓 
g#

也在区间=上可导，且有

(f(#) ) ' = f (#) * g(#) — g'(#) * f(#) □
g# ) = (,g(#) )2 ■ □

反函数求导公式，可用类似于［13(中求指数函 

数的差商控制函数的方法.
［命题2-7(反函数的求导法则％ 若f(#)在 

区间=上可导且'(# ) '0,其值域为J,则其反函数 

g(# 也 J 导， 有

'#) = ' g(#))-

证明 对任意［u,%( ( J,由f(x)是李普希兹

可导的，有［u,%(上的点'和q使得

'(.g' ) ) " f(()) — f()))"f'(g(q ) ) &

即'(g')) "g()gu "'(g(q))，这表明 

—在fg)和宀之间，即 

g(# 的差商控制函数. '(# 差商

有界及其非零条件，不难验证'(g(# ))差商有界.

□
上面命题2-6和2-7的证明中，若仔细推敲，需 

要假定作为分母的函数的绝对值在所考虑的区间上 

有正的下界，而不仅仅是非0.在引入实数理论后才 

能证明，对于差商有界函数而言，在闭区间上有正的 

下界和处处非0两个条件是等价的.
上述这些求导法则和传统微积分完全一致.，无 

需多讲什么了.

3 初等函数微分法

数学中最重要也最常见的一大类函数是初等函 

数.所谓初等函数，是由不多的几种基本初等函数 

经过有限次四则运算和复合运算所得到的函数.基 

本初等函数共有6类，就是常数函数、幕函数、对数 

函数、指数函数、三角函数和反三角函数.
基本初等函数的求导公式，最根本的可以归结 

为 3 条 + = 0 , (In# )'=丄和(sin# ) ' = cos#.从这 
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3条出发，使用下列5条法则，可以建立基本初等函 

数求导公式表.这5条法则就是上一节讲的：

(i) 函数线性组合的导数：

Caf (x% + 0g (x))' — af'(x~) + 0g' (x);

(ii) 函数积的导数：

{f(x')g(x))r — f'x)• g(x) + g' (x) 1 f(x) &

(iii) 函数商的导数：

(g(x) ) — g，(、x) f (、x) — g(x) f，(x~)

f(x) (f(x))2 '

(iv) 复合函数的导数：
(f(g(x )))' ; f' (g(x ))g' (x );

(V)反函数的导数:若f(,g(x)) — x则

这5条法则可以归结为两条,即函数和的求导 

法则和复合函数求导的链式法则.

从这很少的公式和法则出发，得到基本初等函 

数求导公式表：

(1) 常数'—0.

(2) 幕函数(xn)' — xn—1(n非零整数,

x ) (— 8, + 8));

(xa)' — axa—1 Ca 非零实数，x > 0).

(3) 对数函数(lnx)'—丄(x > 0)；

—；—(x > 0). 
xlna

(4) 指数函数(x) — ex &

(ax )' —axlna!

(5) 三角函数(sinx) — cosx；

(cosx) —— sinx &

(tanx)z — ---- 2—
cos x

(cotx) — ^^— 
sin x

6) 函数

(arcsinx)7 — ----------  ( I x I < 1)；
/1—x2

(arccosx) —1 IxI <1 )；

(arctanx)7 ———,--- 2
1 +x2 

则，就能根据初等函数的表达式，求出成千上万种初 

等函数的导数.这些计算工作可以机械化地使用计 

算机软件执行.

下面来讨论一下导数记号问题.

牛顿采用的导数记号是在代表函数的变量名上 

加个圆点.用一撇表示求导数运算，则是拉格朗日 

首先采用的记法•

这个记号很方便，但有不足之处.例如，如果计 

算(u%)',就有了问题：是把u看成自变量，还是把% 

看成自变量呢？把u看成自变量,％就是参数,u%就是 

幕函数，(u%)' — % • u%-1 ；如果把%看成自变量，"就 

是参数,u%就是指数函数，则(u%)' — u% • lnu;两者 

大不相同.

莱布尼兹建议，用A或来表示函数 
ax ax ax

y — f(.x)的导数.按照莱布尼兹的这种记号,'|卜— 
au

% •ut—1而<u~ — u% • lnu,两者就分清楚了 •
a%

记号y作为导数，本意是一个整体•但在引进 

ax

微分的概念后，也可以看成两个微分的比.而且这 

样带来很多方便.

什么是微分?通常把f(x + h)—f(x)叫做函数 

f在x处的差分，通常记作"y或者"f(x)、"f等； 

f xh叫做f在x处的微分，通常记作Ky或者 

d/(x).d/等.这样看，微分的意义很清楚也很简 

单，就是f (xxh,这里h是不同于x的独立的变量.

既然Ky — f (x)h,把x看成x自己的函数就有 

ax — (x )'h —h !于 ay — &' (x )h —&' (x )ax. 

样— foKx就成为y — '(x)的另一种写 

法，即求微分的表达式.这样一来，初等函数求导公 

式可以写成初等函数微分公式 ：

(1) 常数 C— 0；

(2) 幕函数d.zn — xn—1clz(n非零整数，

x ) (— 8 , + 8))；

d.za — ax0—1 cI-zCc 非零实数，x>0).

(3) 对数函数 dlnx — — (x > 0)；

(arccotx)7 ———,--- 2
1 +x2

d logx x 
x l na (x > 0 ) .

从上面这些公式出发，应用计算导数的运算法 (4) 指数函数 Kex — exKx；
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da# = a#lnadx.

(5) 三角函数 dsin# = cos#dz；

dcos# =— sin#d# 

dan# = d# &
cos # 

dcot# = . #.
sin #

(6) 函数

darcsin# = — # ( I # I <
V1 #

1);

darccos# = ------#— ( I # I <
V—#

1)&

darctan# = “ # 2 &
1 9 #2 

darccot# = -—^#7.
1 9 #2

求导数的运算法则，也可以用微分等式来表示 : 

⑴ 函数线性组合的微分：d(f 9"g)=adf 9"dg;

(ii) 函数积的微分：d(&・g) = fdg 9 gdf;

(iii) 函数商的微分：d(g) = fdg—2gdf;
f f

(iv )复合函数的微分：df(g ) = f g dg;

(v )反函数的微分:若fCgC#) ) = #则dg = '(g) •

微分等式在表示复合函数的链式法则时更方 

便•设A = f(u)且u = g(# )，按链式法则有dp = 
df(g(#) ) = f JgO ) gf (#) dx &但由于 u = g(#), 

所以 du = gz(# ) d# 这样就有 dp = df(g(#))= 
f'(g(# du， 也 dA = df u = f' u du，

尽管u是中间变量，微分等式dfu) = 'u) du仍 

然成立•这样不论函数复合多少次，都可以按微分 

等式一层一层地计算•这叫做微分等式的不变性.

4 定积分及牛顿一莱布尼兹公式

如何计算任意曲线包围的面积，直到17世纪初 

还是数学家面前的难题•微积分的诞生使这个难题 

迎刃而解•
一般说来,任意曲线包围的区域总能用直线分 

割成若干矩形和一些“曲边梯形”(如图4-1)，所以 

问题最后归结为曲边梯形面积的计算•在'3(中利 

用差商控制函数求出了不少曲线下曲边梯形的面 

积，又利用曲边梯形面积引进了对数函数ln#.为了 

进行更严谨的讨论，必须说清楚什么是曲边梯形的 

面积•

给了区间/上的函数f(# )，对应于=中任意两 

点u < %，f(#)在［u,%(上的曲边梯形的“代数面 

积”(如图4-2,在#轴上方部分面积为正，下方部分 

面积为负，取总和•)，可以看成是某个二元函数 

)u，)的值.基于一般的面积概念,S(u,%)应当满 

足两个条件• 一个条件是面积的可加性：［u,%(上的 

面积加上％,(上的面积，等于［u,^(上的面积；第 

2个条件是，［u,%(上的面积和区间［u,%(的长度之 

比，应当是f(#)在［u,%(上的“平均值”.根据面积 

的这些直观性质，抽象出“定积分”的定义.

图4-2 区间［u%］上曲边梯形的代数面积

［定义41(积分系统和定积分％ 设f(#)在区 

间/上有定义;如果有一个二元函数S(u,%) (u )=, 

% )=)，满足

(i) 可加性：对/上任意的u%D有

S(u,%) 9 S(%,D)= S(u,D)&

(ii) 中值性：对/上任意的u < %，在［u,%(上必 

有两点'和q使

f') (% — u) " S(u,%) " f(q) (% — u); 

则称S(u,%)是&(#)在/上的一个积分系统•
如果&(#)在/上有唯一的积分系统S(u,%),则 

f(# ) = 积 ! 数 S u !% ) f(# ) 
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Lu,%~］ 的定积分，记作S(u,%) — / f(x)dx.表达 

式中的f(x)叫做被积函数,x叫做积分变量,u和％ 

分别叫做积分的下限和上限.用不同于u!的其他 

字母来代替x时 Su%)数值不变.

根据定义容易得出

［命题4-1$ 若S(u!)是一个积分系统，则

(1) S(u,u) — 0；

(ii) S(u !)——S(%,u).

证明 $)由 S(u!) +S(u!) — S(u!)推出

S(u ,u) — 0 ；

(ii)由 S (u ,%) + S(% ,u) — S (u , u) — 0 推出

S(u %) —一 S(%,). □

注意到积分系统定义中的不等式可以写成等价的

fP" %一f(.q)，
%—u

这就把积分与差商控制函数密切地联系起来.

［命题4-2$ 设S(u,%)是f(x)在I上的一个 

积分系统！是I上的一个点，令F(x) — S(c,x),则

I f(x) F(x) 的差商控制函数；

反过来，若在Ulf(x)是F(x)的差商控制函 

数，令S(u,%) — F(%)—F(u)，则 S(u,%)是f(x)在 

I上的一个积分系统.

证明 设S(u,%)是f(x)在I上的一个积分系 

统且F(x) — S(c,x)，则由可加性有S(u,%)— 

S(c,%) —S(c,u) — F(%) — F(u)，再由中值性可知 

f(x)是F(x)的差商控制函数.

反过来，若在Uzf(x)是F(x)的差商控制函 

数，令 S(u,%) — F(%) ― F(u),则由

S(u,%) +S(%,d) — F(%) —F(u) + F(.w) —F(%)

—F(d) — F(u) — S(u,d),

可知S(u,%)满足可加性,再由差商控制函数定 

义得S(u,%)满足中值性.□

通过较为深入的讨论可知，这里引入的定积分 

概念和黎曼积分是等价的.

［命题4 3(微积分基本定理，即 

Newton-Leibniz公式)( 设F(x)在区间Q上有宏 

导数f(x)，则对任意u ) 0和％ ) Q有

/ f(x')dx — F(%) — F(u) &

反过来,若f(x)在Q上有唯一的积分系统 

S(u,%) — C f(x)—C,对任意固定的 u ) Q 令 F(x) — 

S(u,x) — / f(t)dt,则F(x)在区间Q上有宏导数 

f (x ) .

证明 设在QJzFCx)有宏导数f(x).因为
f$x) F$x) 的差商控制函数, 4—2

S(u,%) — F(%)—F(u)是f(x)在Q上的积分系统. 
按定积分定义还要证明f(x)在Q上的积分系统的 

唯一性.设R(u,%)也是&(x)在Q上的积分系统，只 

要证明R(u,%) — S(u,%).为此取任一点a ) Q并 

令G(x) — R(a ,x),则f(x)也是G(x)的差商控制 

函数.因为f(x)是F(x)的宏导数，即专属的差商控 

制函数，故有常数c使得G(x) — F(x)+c,从而 

R u ,%) — G$%) —G u) —F$%) —F u) —Su ,%), 

即S(u,%)是f(x)在Q上的唯一积分系统.
反过来，若f(x)在Q上有积分系统S(u,%)— 

| f(x)—c,对任意固定的 u ) Q令 F(x) — S(u,x)— 

f (I")E,由命题4 — 2可知&(x)是F(x)在Q上的 

差商控制函数，由积分系统的唯一性,f(x)是F(x) 

在Q上的独享的差商控制函数，即宏导数.□
与传统的微积分教程中所表述的微积分基本定 

理不同，这里不仅对f(x)没有加上连续性之类的附 

加条件，而且定理是双向成立的.这也是我们考虑采 

用宏导数概念的初衷.
微积分基本定理把［13(中计算曲边梯形面积 

的方法提升为一般的公式,并且建立了符号表示，开 

辟了进一步发展提升的空间.
顺便说一下，Lax在［1］中把函数f(x)在区间 

S±的黎曼积分记作Iff,S),强调积分是一种运 

算，输入是一个函数和一个区间，输出是一个数.而 

K.f,S)的值的确定只用到两个性质：

(1) I( f, S)关于S的可加性:对任何不相交的S 

的子区间S】，S2有

I(, Si +SJ — I(, S1)+I(.f, S2)；

(2) I(f, S)关于f的有界性：若m " f()" 

M(0x ) S),则

m I S I" If , S) " M I S I.
从这里可以看出我们的想法和他本质上是相通 

的.不过他是先肯定了函数f(x)的黎曼可积性,再 

探索其性质;我们则将这两条性质作为考虑定积分 

的逻辑起点,再加上唯一性来建立定积分的公理化 
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理论•

若&(#)是F(#)的宏导数,则称F(#)是/(#)的 

原函数•牛顿一莱布尼兹公式表明，只要找到f#) 

的一个原函数，就能够轻易地求出A = fC#)构成的 

曲边梯形的面积•解决了大量的面积计算问题.

例41 如图4-3,抛物线a = #2和直线a = 

# 9 2交于P和Q两点，求线段PQ所对的抛物线弓 

形的面积•

解 如图，所求弓形面积等于梯形ABPQ减去 

抛物线下阴影部分面积之差•设阴影部分面积为S, 

由于/(#) = #的原函数是F(#) = 3，根据微积分 

基本定理得

容易算出梯形ABPQ面积为芍,故所求弓形面积为

这里和以后用记号F(#) I表示F(b)—F(a). 

其中变量#可以代之以其它字母变量•

例4-2 求函数a = sin#的曲线在区间［a 

形成的曲边梯形的代数面积•
解 由于(一cos#) = sin#,根据微积分基本

定理可知所求代数面积为

/ sin#dz = (— cos#) I ba

= (—cosb) — (— cosa) = cosa — cosb. □ 

取特例，令a = 0b = #,求得正弦曲线在［0,#(上的 

弓形面积为

/ s in#dz = co s 0 — co s 兀=1 — (— 1) = 2.

为了应用微积分基本定理(牛顿-莱布尼兹公 

式)，常常要找出已知函数的原函数，也就是问已知 

函数是谁的控制函数？

若F(#)是f(#)的一个原函数+是任意常数， 

则F(#) 9 C显然也是&(#)的原函数•
如果G(#)也是/(#)的原函数，则(F(#)— 

GC#))' = 0,从而F(#) — G(#)是常数.这表明 

&(#)的所有的原函数都可以表示成F(#) 9C的形 
式!

求原函数和求定积分的方法和技巧，叫积分法• 
若F(#)是f(#) 一个原函数，&(#)的所有原函 

数之集F(#) 9 C叫做f(#)的不定积分，记作 

f(#)dz,即

'(#) = &(#)ljf(#)dz = F(#) 9 C.

根据微分的定义，得到

dj&(#)dz = d(F(#) 9 C) = Ff (#) dx = &(#)d# 

jdF(#) = j*Fz(#)dx = jf(#)dz = F(#) 9 C.

这里显示出两个运算符号d和j的互逆关系•

有不少数学软件可以用来在计算机上求函数的 

不定积分，即求原函数•手算不定积分可以查阅不定 

积分表•
根据基本初等函数求导公式，可得如下不定积 

分公式，这些公式构成基本积分表•这些方面都和传 

统的微积分一致，无需多讲.

5 定积分的初步应用

由于本文中定积分的定义不同于传统教材上的 

黎曼积分，所以在应用于解决实际问题时有些说法 

也会有区别•
曲边梯形的面积是定积分最基本也是最简单的 

几何模型•实际上，根据积分系统的定义，只要是依 

赖于两个参数且满足可加性条件的量S(u,%),就可 

以考虑用定积分概念和微积分基本定理来计算它• 

为此先要确定一个使S(u,%)满足中值性条件的函 

数f(#)，再找到函数F#)使有'(#) = f(#),就 

可以求出 S(u,%) = ［ f(#)dx = F(%) — F (u).
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例5-1 设［a的函数y — F(x)的曲线 

在x轴上方•该曲线形成的曲边梯形绕x轴旋转一 

周形成一旋转体(图5 - 1)，求其体积•

y=F(x)

图5-1曲边梯形旋转一周形成的旋转体

解 如图，旋转体在平面x — u和# — %之间 

部分的体积S(u% 关于参数u和％显然满足可加 

性•想象把这部分体积折合成高为% — u的圆柱，则 

圆柱的半径必在［u,%］上的两个函数值F')和 

F(q)之间，即

兀・ F2(P)(% —u) " SQu%)"兀・ F2(q)(% —u). 

于是可取g(x) - $F2(x)为被积函数，得到这部分 

旋转体彳积表达式

S (u, %) — / $F2 (x) dx. □
u

考虑F(x) — kx的特殊情形，设k > 0 , — 0 , 

b - H;对应的旋转体是高为H而底半径为R - kH 

的圆锥体，而对应于［0,H］的子区间［u,%］部分是高 

为%—u，下底半径分别为ku和％的圆台(图5-2). 

圆台体积S(u,%)的定积分表达式中被积函数是 

#k2x2 •由(k- ) - #k2x2可得圆台体积公式

S(u,%) — / 7rk2x2dx — "k3 | u

u

_ #k2 (%3 ― u=—

图5-2 线段旋转成圆台侧面

若记h — % — u^底r — ku ,下底R — k% ,圆台 

体积为I(r,R,h),则得

V(r, R , h) - 1#h(R2 +R 厂+ r2),

当u — 0时r — 0,得到圆锥体积公式

I(r,h) — ^Rh.

这和中学里所学的公式相同.

从这里看到，采用上面定积分的定义，在应用时 

只要检查可加性和中值性，无需经过无穷分割求和 

的论述.

在例5-1推出的旋转体体积公式中取F(x)- 

/R2 — x2 ,- ) ［―R,R］.函数 y — F(x)的图像是 

半径为R而圆心在原点的半圆•它绕-轴旋转一周 

生成半径为R的球面.如果取区间［,h］上的一段 

圆弧绕-轴旋转,则生成一个下底为球的大圆而高 

为h的球台的侧面,如图5-3

对应的球台体积I(R , h)为

I(R , h) - S(0 ,h)

—# / (R2 — x2)cLr.

这里被积函数是二次多项式,容易求得得球台体积 

式

I 球台(R, h) - h(F2(0) +F2(h) +4 F2(h ))
6 2

-h(3R2 —h2).

上式中取h — R得半球体积为響,从而得到体积

i 逮(R)- 4R3.

为了计算球台侧面的面积,考虑两个高相等但

半径分别为R + 5和R—d的两个球台之差所形成
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的球带壳体的体积(图5-4)：

图5-4 球带壳体

I球台(K 9 d ,6) — I球台(R 一 d ,6)

=(R9d)2 — 3 (R — d)2) = 4#6dR , 

再除以壳体的厚度2d,得到半径为R高为6的球带 

的侧面积公式

S 带 = 2#R6

当6 = R时即为半球的表面积，从而球的表面 

积 S球=4#R2.
从这里可知，高和底面直径相等的圆柱，其侧面 

积等于它的内切球的表面积(图5 -5),这是阿基米 

德自己很满意的发现•更有趣的是，若球的直径等于 

圆柱底面直径，则其球带或球冠侧面积等于等高的 

圆柱侧面积.如图5-6.

图5-5 高和底面直径相等的圆柱和它的内切球

图5-6 从与圆柱直径相等的球上割下的与圆柱等高的球冠

如果物体在运动的过程中始终受到一个变力的 

作用，可以应用定积分的概念来计算功.

设a<b是#轴上的两点，某物体Q从a到-作 

直线运动，作用于Q上的力沿#轴方向的分力设为 

F = F(#) (# ) ［a ,b().当 u < % 时设 J(u,%)=— 

J(%,u)是F在Q经过［u,%］段过程中所做的功，则 

J(u,%)显然有可加性.如果F在［u,%］段有上界B 

和下界A,自然有 A(% — u) " W(u%) "B( % — u). 

可见应有W(u,%) =「F(#)d# 下面看一个例子.
u

例5-2 将质量为m的物体Q从地面垂直提升 

到高度H,为克服地心引力需要做的功是多少？特 

别地，如将此物体发射使脱离地球引力，需要的初始 

速度是多大？

解 物体Q与地心距离为#时，它所受的地心 

引力的大小为

这里G是万有引力常数,2是地球质量.若记地球半 

径为R,Gm2 = C,可知将物体从地面提升到高度 

H 所做的 为

•R9H 、
W (H)= / #yd#

因为(—+) = $，故得
# #2

R9H r

W(H)= 二dz =」|R9H
R # #

=—C 9 C _ CH
—R9H 9 R = R (R9H) •

比值占冷小于1但当H很大时接近于1,故可以 

认为此物体脱离地球引力所需要的能量为C，所以 

物体发射的初速I应满足条件

ml2 = C = G2m
丁 = R = R •

比较地面重力与万有引力公式有

G2m ，= mg,

从而有G2 = R2g,将重力加速度g=9.8(米/秒平 

方)，地球半径R = 6371(千米)代入得

I = VR —槡2 K 6371 X 9. 8 X 10一"

-11.2(公里 / 秒)• □
所以，垂直向上发射的物体，在不计空气阻力 
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时，只要初速达到每秒11.2公里，即可脱离地球引 

力•此即所谓第二宇宙速度.

定积分应用很多•这里以及下节略举数例,用来说 

明不借助极限概念如何用定积分解决实际应用问题.

6 定积分的更多应用

前面说明了曲边梯形面积的计算方法•下面讨 

论更一般的曲线所包围的面积•

将要计算的面积分割成几块，使得每块都是函 

数图像形成的曲边梯形•分别计算后再加起来，是最 

普通的思路.

22
例6-1 如图14- 1,求椭圆务— 1$ > 0,a2 b2

b >05扇形AOB(图中阴影部分)的面积，进而计 

算椭圆面积•

图6-1 椭圆的扇形

解如图,A和占的横坐标分别为0和u(u〉0)， 

则弧疋 可以看成函数&(x) - b 血 —x2在［0,u］上 
a

的图象，于是要求的扇形的面积S(u)等于f(x)在 

［0,u］上的曲边梯形面积减去一个三角形的面积 

uf u)
:

S(u) —「b /a — x2 — —
$a 2

用换元法可得：

［/& — x2 cLr — ^-arcsin x + /a — x2 + C.
J - a -

用牛顿-莱布尼兹公式计算得出

［b /a — x2 x
J 0 a

b ‘a2 . x i 1 n--------2、I u———(—arcsm — + /a — x ) I0
a 2 a 2

ab u b 2 2—^-arcsin — + u /a — u •
2 a 2a

于是所求扇形面积为

ab u b 2 2 uf u)Su) — ^r-arcsin — + u /a —u ———•
2 a 2a 2

当u — a时扇形面积是半个椭圆的面积的一半，所以

椭圆面积一4S(a) — 2ab3rcsin 旦

—2b ・——#ab• □

的!

设有极坐标曲线L：r— #$), ) ', 0(对于 

',0(的任意闭子区间［u,%(,记由曲线L和射线 

% —u, — %所围成的曲边扇形面积为S(u,%),则 

S(u,%)显然具有可加性；再者，与此曲边扇形面积 

相等且圆心角同为% — u的扇形，其半径应为R — 

/%—%)•显然在［u,%(上有P和q使得#(P)" 

R "#$)(图 15 一 2)，即得

-1#2 (p) (% — u) " S(u,%) " 2b (q) (% — u), 

可见S(u,%)是f() - (%)在［a, 0(上的积分系

统.若r — #()在［a, 0(上差商有界,则此积分系统 

唯一，从而有：

1S(a, 0) — 2 / 忒 Od%•

这就是极坐标系下曲边扇形面积的计算公式•这里 

的2#(%)d%称作极坐标系下的面积元素.

图6-2 曲边扇形的面积

在实际问题中，只要能求出被积函数的初等的 

原函数，由微积分基本定理即可知道定积分的存在 

性，并且可以用牛顿一莱布尼兹公式来计算•因此 

不必担心计算公式中涉及的定积分的存在问题.

例 6-2 计算心脏线 r — a(1 + cos%) (a > 0) 
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所围成的图形面积(图6-3).

图6-3 心脏线包围的面积

解 应用极坐标系下曲边扇形面积的计算公 

式得

S — a2 (19 co s0)2d0
2 J 0

a2 2#

=— (19 2cos% 9 cos2 %) d%
20

=% / $9 2cos% 9 19 严%)
2 0 2
a2 2# 3 2# 1 2#

=—(| 可 d%9 2cos%d% 9 cos2%d%)
2 J 0 2 0 2 J 0

= 2(2 9 2 s in% 9 1 s in2%) 10# = 2#a2. □

下面讨论平面曲线长的计算.
设函数&(#)在区间Lab2±有定义，［u,%(( 

La,b(.把曲线a = &(#)在\_u,%}^的这段长度记做 

S(u,%),则S(u,%)显然具有可加性.
如果能够进一步说明S(u,%)是［a,b(上的某 

个函数g(#)的积分系统，就有了计算曲线长度的办 

法•关键是把函数g(#)找出来.

如果曲线a = &(#)是一条斜率为0的线段，由 

勾股定理有S(u,%) = (%—u)槡1 9 02 &即斜率的绝 

对值越大，线段越长(图6-4).

图6-4 线段长度与斜率的关系

进一步，如果曲线A = &(#)是一条折线，而对 

# ) ［u,%(,组成折线的线段的斜率为0(#),则必有 

［u,%(上的 '和q ,使

槡1 9 02 ') (%_u) " S(u,%)"槡1 9 02 (q) %%— u) 

也就是说 Su,)应当是［a,b(上的函数g(#)= 

槡19 02(#)的积分系统•把对折线情形的分析推广 

到曲线情形，并且注意到曲线A = &(#)在# ) ［u, 

%(处的斜率0(#) = '(#),便可以合理地认为, 

S(u,%)是［a,b(上的函数 g(#)=槡1 9 (' (#))2 

的积分系统•如果A = &(#)逐段李普希兹可导，则 

此积分系统唯一，便有

S(u,%) = / 槡 1 9 ('(#) )2 d#
u

于是［a,b(上曲线a = &(#)的弧长计算公式为：

例6-3 计算曲线a = #~ (0 " # " 2)的
弧长(图6-5).

图 6 — 5 曲线 a = #2 (0 " # " 2)

解 由于'(#)= ，故由弧长公式知:

Q 了
19 4djc

2 1 4 (9#)2 2

=8(5. 52 — 1) — 3. 53.

若曲线由参数方程

4# = #()
3 a " E ""，
A = &

给出，则利用定积分的换元法易得曲线由参数方程

给出时的弧长计算公式为

s = / 槡(#/(方))2 9 (&'(方))2 d/.
a

若曲

r = r% (a " % "")



14 高等数学研究 2020年1月

给出，要导出它的弧长计算公式，只需要将极坐标方 

程化成参数方程：

F0)(x) — F(x),(F(T)(x)) — Fn(x).就有

4x(%) — r(%)cos% 
ly(%) — r(%)sin%

容易求出

F7a + tn—1) — Fn) (a) + f 1 F(+1) (a + t”)dn 

相继代入前式或作数学归纳可得

［命题7-1$(泰勒公式) 若F (-)在区间I上

/((x/(%))2 + (y/(%))2

— / ( / ( %)cos%—r ( %)sin%)2 + ( r (%)sin% + r ( %)cos%)2

n + 1阶可导，，和a + h是I上两点,则有

Fk) (a) hk , 
—k —十

—/r2 +'2 ,

从而有极坐标方程曲线弧长公式

仔

s - / /r1 ( %) + (r ( %))2 d% □

F (a+h

F(n+r)(a + tn) dn …dsdz.

若设a + h — x, = h — x — a ,此等式成为

F() (a ) (x — a) k 

k

例 6-4 计算心脏线 r — a(1 + cos%) (0 " %" 

2#)的弧长.

解 因为

F (x

F(+1) (a + tn) dn …d t1 d t. □

此等式叫做F(x)在x — a处的n阶泰勒展开式，或

/-T (%( + (r (%))2 — /a2 (1 + cos%)2 + ( — asin%)2

4a2 (cos4 £ + sin2 § cos2 £ 2a cos2

所以，

% 
cos2 d% — 4a cos# d#

J 0

泰勒公式.右端的和式叫做F(—)在x — a处的n阶 

泰勒多项式，通常记做

Tn(x,F) — n Fk x —a)k ,
k — 0 k -

而F(x)与它的n阶泰勒多项式之差则称为其n阶 

式的 , 做

£

%

+

Ha. □

7 泰勒公式

在牛顿-莱布尼兹公式f F'(x)dz — F(%)—

F(u)中记 u — a , % — u — h,得

pa+h
F$a+h) — F$a) + F' $x)dx，

a

就可以利用F'x)的定积分和F(a)来计算F(a + 

h).做代换x — a + t后得到

F(a + h) - F(a) + f Ff (a + tt di.

若F'x)也李普希兹可导就有

F'(a + ") = F'(a) + J F'(a + " ) dt].

代入前式得

F(a+h) — F(a) +「(F'(a) + " N(a + " ) d^ ) dt
J 0 J 0

F(a) +/F，(a)dt + FF $a+t1 ) t1Kt

F(a) +F/(a)h + F' (a + t1 )di1 di.

一般说来，可以归纳地定义F( x)的"阶导数是其 

n — 1阶导数的导数，并且记做Fn (x),即记

Rn(x,F) — F(x) — Tn(x,F).
泰勒展开式的余项有多种表示方法.按上面的展开 

式有

Rn(x,F) —「「「…「” 'F* (a + tn) din- dt］ dt ,

0 0 0 0

叫做泰勒展开式余项的积分表示方法.在不至于混 

淆时，可以简单地用Rn(x)和T”(x)分别表示

Rn(x,F% Tn(x,F%.

通常,F(x)在x — 0处的泰勒展开式也叫做马

克劳林展开式.

如果当 x ) [a,a +h(时有 I F(+1) (x) I " M,

则容易 计出

Rn(x,F% MI x — a I 卄1 

(n + 1) *

当n较大或I x — a I较小时,I Rn(x,F) I就会 

很小.因此，泰勒公式提供了用四则运算计算函数值 

的一 有 的 法.

上面所述多次使用微积分基本定理即可获得泰 

勒展开式的思路，见［8(,不同于传统教材.

微积分基本定理用到了积分，而在泰勒多项式 

中只用到函数的导数.能不能只用导数的性质来获 

取泰勒公式呢？

［命题7-2］ 设F(x),G(x)在［a,b(上可导, 
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f (#)和g(#)分别是F(#% G(.#)的导数.如果对一 

切 # ) [a ,b(有 f (#) " g(#),则对一切 # ) ' ,b( 

有

F (# ) —F (a ) " G(# ) —G(a )

证明 令H(#) = F(#) —G(#),则对一切

# ) La,J 有

H' (#) = (F(#) — G(#)) = f(#') — g(#) " 0 , 

故H(#)在(上单调不增，从而H(a) , H(#),

□

[命题7-3$(预备泰勒定理) 设H(#)在[a,b( 

上/ + 1阶李普希兹可导，且

(i) 0 = 0,1,2,…，/ 时，有 () = 0 ；

(ii)在'上有 m " H(91) (#) " 2.

则对# ) [a,b] ±有

m (# — a)/91 

(/ + 1) !
"H(#)" 2 (# 一 a)^91 

(/ +1)!

证明

归纳证明

先对0 = 1,2,-・/ +1作不完全的数学

m $#—a)0
0!

"H(91—0) (#)" 2 (# — a)0 
k~!

事实上，当0 = 1时，在上有m " H(91) (#)" 

2，由命题7-2得

m(# — a) " H(/ (.#) " 2(# — a).

设0 < / + 1时所要不等式成立，则由命题7-2对 

091 有

m (# 一 a)091 才 HD ()才 2(# — a)091 

(0 + 1)! " H " ( 0 + 1)!

特别当0 = /时得到要证明的结论.□

［命题7-4］(泰勒定理) 设F(#)在上

/ + 1阶李普希兹可导，且在上有 I F()(#) I"
2,则对［a,b(上任意点c和#，有泰勒展式

2) )
F() = F(c)+F(c))# — c)+^-^- (# — c) 9----- 9

F(T)(() ,
(—1) ! ( # 一 " +R/ ( #)'

并且

I Rn(#) I = I F(#) — Tn(#,c I"2 I # — c I/+1 

(/ + 1)!

证明 令H ( #) = F(#) — T(#,'),易验证 

H ( #)在上满足命题7 — 3中的条件，从而当 

# 时，有上述不等式成立.

当# ) ［a 时，取 u = — # ,G(u) = F(— u),

对G(u)在［一 c, 一 a(上应用上述已经获证的结论, 

再将G回代为F,就完全证明了所要的结论.□ 

利用泰勒公式展开多项式，可得准确的表达式. 

例7 - 1 按(# + 1)的幕展开函数F(#) = #4 — 

7#3 + 2#2 — 3# + 5.

解 函数 F(#) = #4 — 7#3 +2#2 —3#+ 5 在 

任意闭区间(上任意阶可导，且

故当/,4 时 I Rn(#^F') I = 0,即 F ( #) = T4( #,F)= 

T( (#, F).

下面用待定系数法求T4( #F),设

F(#) = A + B(# + 1) +C (# + 1)2 +

D (# + 1)3 +Q (# + 1)4；

两端取#=一 1得

A = F(—1) = (—1)4 一7 i (—1) +2 ・

(一 1)2 一 3 ・(—1)+5 = 18 ,

两端相继求导并取# =—1得

B = '(一 1) = 4 •(— 1)3 — 21 •(— 1)2 + 

4・ $—#) —3 =—32,

2C = F'(—1) = 12 ・(一1)2 —42 ・(一1)+4 = 58, 

C = 29,

6D = F3) (— 1) = 24 ・(一1) — 42 =— 66 , 

D =—##!

最后显然有E=1从而所求的展开式为

F(#) = 18 一 32(# + 1)+29 (# + 1)2 一 

##$# 9#)3 9 $# 9#)4!

这种方法说明了泰勒多项式的发现过程.

若不用导数，此题可设# = u — 1代入整理后再 

用u =# + 1回代得到同样结果：

F(#) = F(u 一 1) = (u 一 1)4 一 7(u 一 1)3 +

2(u 一 1)2 一 3(u 一 1) + 5 = u4 一 11 u3 +

29u2 —32u9#8 = $# 9#)4 —##$# 9#) 3 9 

29(#+ 1) — 32(# + 1) +18. □

例7-2 写出函数F(#) = e#的/阶马克劳林 

公式，并求e的近似值,使其误差不超过10-6.

解容易计算出

'(#) = F (#)=…=F( (#) = e# ,

F(0) = F (0)=…=F( (0) = 1. 

根据泰勒定理，对于任意的a " 0 " b和# ) [a,b]得 

e# = 1 + # + 寺#2 + ^#3 + …+ 当#" + Rn (#).
2! 3! /!

若记 A = max/ I a I , I b I ｝侧
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居”"十 .
取#- 1,则得无理数e的近似式为

e- 1 + 1 + 1 + 1+ ••• 1
(n—1)!*

因为--1 ) ［0,1(,所以

取 n — 9,可得 Rn (1) < 10—6，此时 e — 2. 718282 

即为所求•□

图7-1画出了函数y = e-和它的前几个泰勒多 

项式的图像.

例7-3 求函数F$x) — sinx的n阶马克劳林 

式.

解计算给出

x3 x5
sinx — x — 冇十市―…十3! 5!

2k—1

(-1)k—1kw 十…，

I x2k+1 I

其中］R2k(x)I " (k 十］)* •

如果取k — 1,则得近似公式sinx — x,分别取 

k — 2,3,则可得sinx的3次和5次近似公式sinx —
3 3 5

x — ^ 和 sinx — x — ^ 十-，如图 7 - 2. □
3! 3! 5!

1 ▲ ■ /I y ; /
正弦函数的泰劳克项式 '/

\ /\

图7-2正弦函数的泰勒多项式

在常见的数学手册上有基本初等函数的马克劳 

林展开式，这里不再赘述.

8结语

综上，在[13]的基础上，建立了不依赖极限的宏 

导数和定积分概念；证明了无附加条件的微积分基 

本定理；引入了便于应用的李普希兹导数并导出了 

适用于初等函数类的求导法则；讨论了有关定积分 

的一些应用案例；给出了泰勒公式的简捷推导方法•

后续的工作设想，将是引入实数理论和极限概 

念，使之和现在通用的数学分析接轨融合，以期最大 

限度地减少进入教学实践的观念阻力.

有关的教学实践，也许有两种方式•对于非数 

学专业，不妨直接用这里的方法讲微积分，使学生对 

微积分能够知其所以然；对于数学专业，则可以把 

这些内容编成一些习题,使学生开阔眼界思路，激发 

其创新精神，提高其数学素养•这些想法都是粗浅 

而初步的，欢迎批评指正，共同努力，把我国的高等 

数学教学做得更好•
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